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Abstract: In the process of excavating and mining, water-inrush episodes induced by a number of geological or 

human factors is a complex geological hazard and often lead to disastrous consequences, making an accurate 

prediction before an inrush accident is difficult because there are so many factors and interactions between 

factors are related in such hazard, No matter how accurate a risk assessment approach is, it can not 100% 

guarantee that every water inrush accident can be accurately predicted. Until so far, inrush accidents are 

still occurring every year all over the world, especially in developing countries. For inrush accidents in 

underground mining, the first and also the critical step of controlling the accident is to find out the related 

inrush sources, accurately identifying which aquifer or which water body is directly related to the inrush 

accident is the critical step of controlling water volume and reducing casualties and economic losses. In 

this study, method of using artificial neural network (ANN) to identify the water-inrush sources is pro-

posed, by establishing a back propagation neural network (BPNN) to train, test and predict the sample 

data selected from Jiaozuo mine area, results show that ANN is an effective approach to identify water 

sources. 
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1. INTRODUCTION 

Complex hydrogeological conditions in mining operations often lead to sudden water 

inrush accidents, causing heavy losses of human life and economy. According to statis-
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tics (Guomei An 2011), from the beginning of the 1980s, in China, nearly 250 mines 

were flooded by water and almost 9000 people lost their lives. Only from 2006 to 

2010, 306 water accidents were occurred in China’s major coal mines and resulted in 

1325 deaths.  

Water inrush in underground mining is a complex geological hazard related to 

many geological factors and factor interactions. To date there have been lots of inves-

tigations and studies (Shi and Singh 2001; Motyka and Bosch 1985; Lu et al. 2015; 

Mokhov 2007) have been conducted all over the world to research the specific mecha-

nisms of water hazards, but until now the precise mechanisms of instantaneous inrush 

are still unresolved. Besides there have been also lots of studies (Wu et al. 2011a; Wu et 

al. 2011b; Dumpleton et al. 2001; Dong et al. 2012) about using different techniques to 

predict the occurrence of water inrush, but until now the prediction approach are still 

unreliable. Currently, inrush accidents are still occurring every year all over the world, 

especially in developing countries.  

Under the cases of the mechanisms are still unresolved and the prediction tech-

niques are still unreliable, for inrush accidents in underground mining, the most effec-

tive and critical way of controlling the accident is to find out the related inrush 

sources, accurately identifying which aquifer or which water body is directly related to 

the inrush accident can help to estimate the inrush scale and then to take further pump-

ing measures to manage the inrush accident. In this study, an approach of using artifi-

cial neural network (ANN) to identify the water-inrush sources will be proposed and 

implemented. 

2. METHODOLOGY OF ANN 

2.1. BACK PROPAGATION NEURAL NETWORK 

Among all neural networks, BP neural network (BPNN), independently discovered by 

Rumelhart, Hinton and Williams (1986) and Parker (1985) has been widely used after 

a detailed description by Rumelhart and McClelland (1998). It is a kind of forward 

neural network with multi-layer neurons. Each layer contains a number of neurons, 

and neurons between the layers are interconnected by weights and thresholds. It be-

longs to a kind of supervised learning algorithm and the essence of the algorithm is by 

constantly comparing the network outputs with target vectors to adjust the network 

weights and thresholds to achieve the minimization of the mean square error (MSE). 

2.2. DETAILED ALGORITHM OF BPNN 

To ensure BPNN has a strong capability of learning and predicting, establishing an 

appropriate neural network based on the actual project is required. Once the structure 

of the BPNN in views of practical project is determined, a mapping relation between 
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input and output therefore can be created if enough training sample sets are used for 

training the network. With the created mapping relation, the network then can be used 

for new sample prediction. This is how the network works from training (or learning) 

to prediction.  The detailed descriptions about the algorithm of BPNN will be given in 

the following steps (also shown in Fig. 1). 

Step one: according to the input vector p = (p1, p2, …, pn) and the target vector 

t = (t1, t2, …, tq). The nodes of the input layer, the hidden layer and the output layer 

can be determined, supposing the node numbers for these three layers are n, m and q, 

respectively. Initializing the connection weights and the thresholds (wij, wjk, a and b) 

as tiny values, generally they can be obtained by randomizer of the computer. 

Step two: according to the input vector p, the output of the hidden layer yj can be 

calculated by Eq. (1) as: 
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In this formula: wij denotes the connection weights from the input layer to the hid-

den layer, and aj is the threshold of the hidden layer, f  represents the activation func-

tion of the hidden layer and the mathematical expression is f (x) = (1 + e–x)–1. 

Step three: according to yj, outputs of the output layer can be calculated by Eq. (2) as: 
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In equation (2), wjk denotes the weights from the hidden layer to the output layer, 

bk is the threshold of the output layer, g is the activation function of the output layer 

and the mathematical expression is g(x) = x. 

Step four: supposing that 2

1

1
( )

2

q

k k

k

t h
=

= −e  is defined as the error function of the 

network, then the increments of the weights and the thresholds can be calculated by 

Eq. (3). 
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where  denotes the rate of network learning, which is supposed as a small value in 

interval [0, 1]. 
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Step five: by means of increments which are obtained from Eq. (3), the weights 

and thresholds then can be updated as Eqs. (4)–(7). 
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where ek = tk – hk denotes the single error of iteration. 

Step six: Through Eq. (8) the global error is calculated to know whether the global 

error reaches the accuracy requirement. If it does not reach the minimum MSE, com-

ing back to step (2). Of course, iteration will come to end if it does. 
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Fig. 1. The structure of BP neural network and its algorithm in detail 

3. A CASE STUDY FROM JIAOZUO COAL MINE 

3.1. THE ESTABLISHING AND TRAINING OF ANN 

Different aquifers usually have distinct hydrochemical characteristics because either 

they are supplied by different water sources or their draining conditions are com-
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pletely different. For example, aquifers below the floor always have a high concen-

tration of Ca2+, Na+, K+, Mg2+ and HCO–, in mined-out areas, water always has 

a high content of SO4
2- because in mined-out area there is a long period of closing 

state. Therefore, through analyzing the hydrochemical characteristic of water sam-

ples of all the related aquifers to identify which aquifer is related to the inrush acci-

dent is reasonable. 

In this paper, Jiaozuo mine area located in Henan province in China is selected 

as a case study to show how ANN is exactly used for water source recognition. In 

Jiaozuo mine area, 9 major producing mines are frequently threatened by water-

inrush accidents and a total of more than 700 times of water inrushes have been 

occurred in the coal production history, among them there were 61 times the in-

rush-water volume was greater than 10 m3/min and the maximum inrushing vol-

ume up to 320 m3/min. The Quaternary sandstone aquifer, the Permian shale aqui-

fer, the Ordovician limestone aquifer and the Carboniferous limestone aquifer are 

four of the aquifers related to most of the water inrush incidents. In 2003, based on 

39 water samples collected from four major aquifers in this mine area, a complex 

mathematical model was established by Zhang (2003) to achieve water-inrush 

sources recognition, but the author’s model was so complicated, therefore, in this 

paper, we try to establish a BPNN (Fig. 2) to replace his model and to make 

sources recognition easier. 

The BPNN model used in this study consists of three layers, and the number of 

neurons for each layer is 6, 20 and 4 respectively. Where the 6 neurons in input layer 

denotes the concentrations of Na+ + K+, Ca2+, Mg2+, Cl–, SO4
2–, HCO3

–, 20 is the num-

ber of neurons of the hidden layer and the 4 neurons in output layer represent 4 ele-

ments of the output vector which is expressed as X = (X1, X2, X3, X4). 

Selecting 35 sample (Table 1) sets as training data from all of the 39 water samples 

and choosing the remaining 4 as the forecasting objects. 35 samples that belong to 4 aqui-

fers are divided into 4 different vectors in the form of T = (T1, T2, T3, T4), which are 

 

Table 1. The training sample sets and their vector representation 

Sample 

no. 

Ions [Mg/L] 
Aquifer 

Vector representation 

Na+ + Ka+ Ca2+ Mg2+ Cl– SO4
2– HCO3

– T1 T2 T3 T4 

1 11.98 76.15 15.56 8.5 26.9 292.84 Ⅰ 1 0 0 0 

2 19.34 65.73 18.48 10.64 67.24 239.19 Ⅰ 1 0 0 0 

3 11.5 84.57 24.81 19.86 82.61 253.83 Ⅰ 1 0 0 0 

4 19.78 52.5 16.29 9.93 37.66 229.43 Ⅰ 1 0 0 0 

5 35.1 46.2 17.6 35.8 43.2 219.9 Ⅰ 1 0 0 0 

6 44.88 73.24 24.8 24.07 85.97 303.56 Ⅰ 1 0 0 0 

7 10.29 61.23 29.33 12.16 47.46 309.85 Ⅱ 0 1 0 0 
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8 10.64 59.3 28.4 12.59 34.7 291.68 Ⅱ 0 1 0 0 

9 8.0 69.3 26.39 10.96 43.88 295.24 Ⅱ 0 1 0 0 

10 6.45 63.43 24.1 9.24 41.9 266.34 Ⅱ 0 1 0 0 

11 8.3 63.5 26.9 11.19 43.85 282.52 Ⅱ 0 1 0 0 

12 7.1 63 24.7 7.35 37.8 266.13 Ⅱ 0 1 0 0 

13 7.7 67.1 39 8.82 46.5 281.57 Ⅱ 0 1 0 0 

14 7 68.7 24.9 11.7 43.77 282.16 Ⅱ 0 1 0 0 

15 17.85 62.96 17.28 6.68 23.31 284.57 Ⅱ 0 1 0 0 

16 13.59 61.59 18.85 6.68 23.57 276.69 Ⅱ 0 1 0 0 

17 10 63.87 32.83 4.06 65.09 295.87 Ⅱ 0 1 0 0 

18 12.69 69.39 29.38 13.64 34.54 325.08 Ⅱ 0 1 0 0 

19 98.1 3.1 1.1 23.5 43.84 638.7 Ⅲ 0 0 1 0 

20 207.35 34.75 11.16 23.78 46.54 558.82 Ⅲ 0 0 1 0 

21 311.75 16.25 2.04 33.58 20.56 736.76 Ⅲ 0 0 1 0 

22 303.12 10.24 8.55 32.84 17.47 773.45 Ⅲ 0 0 1 0 

23 304.82 5.77 3.61 40.77 53 628.96 Ⅲ 0 0 1 0 

24 257.23 0 0 27.22 12.24 428.71 Ⅲ 0 0 1 0 

25 502.45 0 2.48 29.04 9.79 1105.8 Ⅲ 0 0 1 0 

26 309.33 0 0 29.03 0 562.17 Ⅲ 0 0 1 0 

27 358.58 10.22 3.72 32.68 14.69 691.17 Ⅲ 0 0 1 0 

28 9.1 86.5 31.8 22.4 57.8 348.31 Ⅳ 0 0 0 1 

29 13.25 99.2 31.1 29.85 83 361.12 Ⅳ 0 0 0 1 

30 9.2 106.7 39.1 40.1 69.8 402.1 Ⅳ 0 0 0 1 

31 17.3 98.2 20.6 20.24 53.2 354.4 Ⅳ 0 0 0 1 

32 4.68 69.14 22.93 26.27 13.38 251.26 Ⅳ 0 0 0 1 

33 19.58 74.67 16.92 24.46 27.62 272.94 Ⅳ 0 0 0 1 

34 19.9 70.47 16.78 18.4 10.79 294.47 Ⅳ 0 0 0 1 

35 20.54 51.73 16.04 24.34 12.34 236 Ⅳ 0 0 0 1 

also the target vectors of neural network. For example, vector (1, 0, 0, 0) is used for 

representing the 6 water samples which belong to the Ordovician limestone aquifer 

(AquiferⅠ), vector (0, 1, 0, 0) indicates the 12 samples of the Carboniferous limestone 

aquifer (AquiferⅡ), vector (0, 0, 1, 0) denotes the 9 water samples which belong to the 

Permian shale aquifer in the roof (Aquifer Ⅲ) and vector (0, 0, 0, 1) is used for represent-

ing the 8 water samples of the Quaternary sandstone aquifer (Aquifer Ⅳ). After establish-

ing the structure of the network and determining the training samples, based on algo-

rithm described in Section 3.2, MATLAB code is written to achieve BPNN testing and 

forecasting. 
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Fig. 2. BP neural network model of water sources recognition 

4.2. THE TESTING AND FORECASTING PROCESSES  

Setting the goal of the minimum MSE of the network as 1 × 10–7, debugging the pro-

gram to train the samples, the training process is shown in Fig. 3, as can be seen from 

this figure the network is converged to the minimum MSE at 2.3 × 10–8 after 17 train-

ing cycles, that is to say, the mapping relation between input and output is established 

after 17 steps of iteration. 

 

Fig. 3. Neural network training performance 
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After the training process is finished, the next step is to test the network. Here the 

samples in Table 1 once again are used for testing the network, 2 samples of each 

aquifer are randomly selected for network testing, and the testing results are shown in 

Table 2. Comparing every element of the output vectors with elements of that 4 target 

vectors, the output vectors then can be classified as corresponding aquifer. The final 

results indicate that the correct rate of the recognition is 100%. All of the 8 selected 

aquifers are correctly identified, which indicates that the trained network has reached 

the prediction requirements. 

Table 2. The testing results with samples randomly selected from training samples 

Samples 1 3 8 11 21 22 29 32 

Actual aquifer Ⅰ Ⅰ Ⅱ Ⅱ Ⅲ Ⅲ Ⅳ Ⅳ 

Output 

vectors 

X1 1.00 1.00 0.00 0.00 0.00 0.00 0.09 0.01 

X2 0.00 0.00 1.00 1.00 0.00 0.00 0.01 0.01 

X3 0.00 0.00 0.00 0.00 1.00 1.00 0.02 0.00 

X4 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.99 

Aquifer identified Ⅰ Ⅰ Ⅱ Ⅱ Ⅲ Ⅲ Ⅳ Ⅳ 

Recognition results true true true true true true true true 

Table 3. The remaining sample sets and their vector representations 

Sample 

no. 

Ions [Mg/L] 
Aquifer 

Vector representation 

Na+ + Ka+ Ca2+ Mg2+ Cl– SO4
2– HCO3

– T1 T2 T3 T4 

1 23.76 66.40 19.59 18.13 57.26 255.29 Ⅰ 1 0 0 0 

2 9.97 64.45 26.84 9.59 40.53 288.14 Ⅱ 0 1 0 0 

3 294.75 8.93 3.63 30.27 24.24 680.51 Ⅲ 0 0 1 0 

4 14.19 81.96 24.14 25.81 40.99 315.08 Ⅳ 0 0 0 1 

Table 4. The forecasting results of neural network with 4 remaining samples 

Samples 1 3 4 8 

Actual aquifer Ⅰ Ⅱ Ⅲ Ⅳ 

Output 

vectors 

X1 0.99 0.01 0.00 0.01 

X2 0.00 1.00 0.00 1.00 

X3 0.00 0.00 1.00 0.00 

X4 0.04 0.01 0.02 0.99 

Aquifer identified  Ⅰ Ⅱ Ⅲ Ⅳ 

Recognition results true true true true 
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Among the 39 water samples in Table 1, 35 of them are used for training and test-

ing the neural network, so there are still 4 remaining samples (see Table 3) can be 

used for testing the prediction performance of the network. The first step of the predic-

tion process is to use the 4 remaining samples as new input data to calculate the corre-

sponding output vectors, and then by comparing each element of the output vectors 

with the target vectors, each of the four samples belongs to which aquifer therefore 

can be identified. The final output vectors and prediction results are shown in Table 4. 

As can be seen from the Table that the prediction results are fully consistent with the 

actual situations, this indicates that ANN is a reliable approach to identify water sources 

from many different related aquifers, and it can be recommend for using in water inrush 

accident to identify water sources. 

5. CONCLUSION 

Based on the problem of how to identify the water source quickly and accurately when 

a water inrush occurs in the process of mining to avoid more casualties and to control 

the disaster, this study proposed and developed an approach of using the ANN to 

achieve water source identification. From our case study in in this study in Jiaozuo 

mine area, the final results indicates that ANN is an ideal tool to realize water source 

recognition, the model is simple and the recognition result is accurate. Compared with 

the method of hydrochemical analysis, the ANN method is more objective because the 

process of training and forecasting is based on objective samples rather than engi-

neer’s subjective judgements, it can be recommend to use in more mining practices to 

identify water sources when there is a water inrush incident. 
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